激光測振技術的原理與應用
激光測振技術是一種高精度的測量方法,它利用激光的多普勒效應來測量物體的速度、位移和加速度。這種技術在工程、物理學和生物醫(yī)學等領域有著廣泛的應用。
多普勒效應是激光測振技術的核心原理。當光源與接收器之間存在相對運動時,接收到的光頻率會發(fā)生變化,這種現象稱為多普勒效應。在激光測振中,激光束照射到運動物體上,反射回來的光頻率會因物體的運動而發(fā)生頻移。這種頻移與物體的速度成正比,可以通過公式Δfc=2v/λc來計算。
為了精確測量這種頻移,通常使用馬赫曾德爾干涉儀。干涉儀通過分束器將激光分為兩束,一束作為參考光束,另一束照射到被測物體上。反射回來的測量光束與參考光束在探測器處發(fā)生干涉,形成干涉圖案。這種圖案的亮度變化直接反映了物體表面的速度和位移。
在分析簡諧振動時,物體的位移、速度和加速度與頻率有特定的數學關系。位移d(t)=Dsin(2πft),速度V=2πfD,加速度A=4π²f²D。通過外差讀出技術,可以調整參考光束的頻率,從而消除測量中的方向不確定性。當物體移動時,干涉圖案的亮度變化頻率會相應調整,這提供了物體運動方向的信息。
最后,通過解調強度曲線,可以將模擬信號轉換為數字信號,實現對物體位移、速度和加速度的實時分析。這一系列精密的技術步驟共同構成了激光測振技術的核心。
激光測振技術的應用非常廣泛。在工程領域,它可以用于監(jiān)測機械結構的振動,評估結構的穩(wěn)定性和安全性。在物理學研究中,激光測振技術可以用于測量微小物體的振動,如原子力顯微鏡中的懸臂梁。在生物醫(yī)學領域,這種技術可以用于監(jiān)測心臟瓣膜的運動,幫助診斷心臟疾病。
總之,激光測振技術是一種強大的測量工具,它利用激光的多普勒效應,通過干涉儀精確測量物體的速度、位移和加速度。隨著技術的不斷進步,激光測振技術在各個領域的應用將更加廣泛,其精度和可靠性也將進一步提高。
▍最新資訊
-
飛秒激光技術:引領電鏡載網加工進入高精度高效時代
在微納尺度科學研究與工業(yè)檢測領域,電子顯微鏡(以下簡稱“電鏡”)是揭示物質微觀結構、探究材料性能機理的核心觀測工具。而電鏡載網作為支撐與固定待測樣品的關鍵組件,其加工質量不僅直接決定樣品固定的穩(wěn)定性,更對薄膜沉積效果、器件結構分析精度及最終電鏡成像質量產生關鍵性影響。因此,研發(fā)適配微納領域需求的載網加工技術,已成為提升電鏡應用效能的重要環(huán)節(jié)。
2025-09-30
-
光的折射與光速變化機制探析
將直筷斜插入盛水容器中,肉眼可觀察到筷子在水面處呈現“彎折”形態(tài);夏季觀察游泳池時,主觀感知的池底深度顯著淺于實際深度——此類日常現象的本質,均是光在不同介質界面發(fā)生折射的結果。在物理學范疇中,折射現象的核心特征之一是光的傳播速度發(fā)生改變。然而,“光以光速傳播”是大眾熟知的常識,為何光在折射過程中速度會出現變化?這一問題需從光的本質屬性、介質與光的相互作用等角度展開嚴謹分析。
2025-09-30
-
納米尺度光與物質強耦合新突破:定向極化激元技術開辟精準調控研究新范式
2025年9月22日,國際權威期刊《NaturePhotonics》發(fā)表了一項具有里程碑意義的研究成果:由西班牙奧維耶多大學PabloAlonso-González教授與多諾斯蒂亞國際物理中心AlexeyNikitin教授聯(lián)合領銜的研究團隊,首次通過實驗實現了納米尺度下傳播型極化激元與分子振動的定向振動強耦合(directionalvibrationalstrongcoupling,VSC)。該突破不僅為極化激元化學領域拓展了全新研究維度,更推動“光與物質相互作用的按需調控”從理論構想邁向實驗驗證階段。
2025-09-30
-
從傳統(tǒng)工藝到原子級精控了解超光滑鏡片加工技術的六大核心路徑
超光滑鏡片作為光刻機、空間望遠鏡、激光雷達等高端光學系統(tǒng)的核心元件,其表面微觀粗糙度需達到原子級水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射損耗,保障系統(tǒng)光學性能。前文已圍繞超光滑鏡片的定義、潛在危害及檢測方法展開探討,本文將系統(tǒng)梳理其加工技術體系,從奠定行業(yè)基礎的傳統(tǒng)工藝,到支撐當前高精度需求的先進技術,全面解析實現原子級光滑表面的六大核心路徑。
2025-09-30