光學(xué)諧振腔的穩(wěn)定條件是什么?
在光學(xué)諧振腔中,光在兩個(gè)反射鏡之間不斷地來(lái)回反射,因此通常要求諧振腔保證光在腔內(nèi)來(lái)回反射過(guò)程中不會(huì)離開(kāi)諧振腔。滿足這一要求的型腔稱為穩(wěn)定型腔。討論光在諧振腔中的行為,可以通過(guò)光在腔內(nèi)往返傳輸?shù)木仃嚤硎緛?lái)證明:對(duì)于腔長(zhǎng)為L(zhǎng)、鏡面曲率半徑為R1和R2的諧振腔,穩(wěn)定條件是:
0<(1-L/R1)(1-L/R2)<1或(1-L/R1)=(1-L/R2) ⑴
引入型腔幾何參數(shù)因子,若令
\n g1=1-L/R1 ⑵
g2=1-L/R2 ⑶
則諧振腔的穩(wěn)定條件可表示為: 0
也就是說(shuō),當(dāng)腔體的幾何參數(shù)滿足上述條件時(shí),腔體內(nèi)的近軸光在腔體內(nèi)來(lái)回多次,而不會(huì)橫向逸出腔外,我們說(shuō)諧振腔處于穩(wěn)定工作狀態(tài)。通常稱式⑷通常稱為諧振腔的穩(wěn)定性判據(jù)。由于存在g1g2>0的條件,對(duì)于穩(wěn)定的諧振腔結(jié)構(gòu),g1和g2具有相同的符號(hào)。如果它們有不同的跡象,則腔不穩(wěn)定。
延伸閱讀:
一.光學(xué)諧振腔又稱光腔或激光諧振腔,是激光技術(shù)中的關(guān)鍵部件之一。它是一種物理結(jié)構(gòu),旨在讓光波在其中反復(fù)來(lái)回反射,并通過(guò)這種反饋機(jī)制實(shí)現(xiàn)特定頻率光波的共振和增強(qiáng)。在激光器中,光學(xué)諧振腔通常由兩個(gè)或多個(gè)高反射鏡(至少一個(gè)是部分透射的)組成。這些鏡子相互平行放置或按照一定的曲率半徑形成一個(gè)封閉的空間,它們連接到激活介質(zhì)(例如激光晶體、氣體放電管或半導(dǎo)體材料等)。
二.在諧振腔內(nèi),光波受到激活介質(zhì)增益的影響后,在滿足諧振條件時(shí)會(huì)在腔內(nèi)不斷地來(lái)回傳播并積累能量。當(dāng)增益超過(guò)損耗時(shí),就會(huì)發(fā)生激光振蕩。光學(xué)諧振腔的功能包括:
1.選擇性放大:只對(duì)光波的特定模式(橫模和縱模)提供正反饋,使其在腔體內(nèi)繼續(xù)振蕩并被放大。
2.控制激光特性:決定輸出激光束的質(zhì)量,如單色性(即頻率穩(wěn)定性)、方向性和光束形狀(如高斯光束)等。
3.模式鎖定:保證激光器工作在單一穩(wěn)定模式,減少多縱模工作引起的光譜展寬。
▍最新資訊
-
飛秒激光技術(shù):引領(lǐng)電鏡載網(wǎng)加工進(jìn)入高精度高效時(shí)代
在微納尺度科學(xué)研究與工業(yè)檢測(cè)領(lǐng)域,電子顯微鏡(以下簡(jiǎn)稱“電鏡”)是揭示物質(zhì)微觀結(jié)構(gòu)、探究材料性能機(jī)理的核心觀測(cè)工具。而電鏡載網(wǎng)作為支撐與固定待測(cè)樣品的關(guān)鍵組件,其加工質(zhì)量不僅直接決定樣品固定的穩(wěn)定性,更對(duì)薄膜沉積效果、器件結(jié)構(gòu)分析精度及最終電鏡成像質(zhì)量產(chǎn)生關(guān)鍵性影響。因此,研發(fā)適配微納領(lǐng)域需求的載網(wǎng)加工技術(shù),已成為提升電鏡應(yīng)用效能的重要環(huán)節(jié)。
2025-09-30
-
光的折射與光速變化機(jī)制探析
將直筷斜插入盛水容器中,肉眼可觀察到筷子在水面處呈現(xiàn)“彎折”形態(tài);夏季觀察游泳池時(shí),主觀感知的池底深度顯著淺于實(shí)際深度——此類日?,F(xiàn)象的本質(zhì),均是光在不同介質(zhì)界面發(fā)生折射的結(jié)果。在物理學(xué)范疇中,折射現(xiàn)象的核心特征之一是光的傳播速度發(fā)生改變。然而,“光以光速傳播”是大眾熟知的常識(shí),為何光在折射過(guò)程中速度會(huì)出現(xiàn)變化?這一問(wèn)題需從光的本質(zhì)屬性、介質(zhì)與光的相互作用等角度展開(kāi)嚴(yán)謹(jǐn)分析。
2025-09-30
-
納米尺度光與物質(zhì)強(qiáng)耦合新突破:定向極化激元技術(shù)開(kāi)辟精準(zhǔn)調(diào)控研究新范式
2025年9月22日,國(guó)際權(quán)威期刊《NaturePhotonics》發(fā)表了一項(xiàng)具有里程碑意義的研究成果:由西班牙奧維耶多大學(xué)PabloAlonso-González教授與多諾斯蒂亞國(guó)際物理中心AlexeyNikitin教授聯(lián)合領(lǐng)銜的研究團(tuán)隊(duì),首次通過(guò)實(shí)驗(yàn)實(shí)現(xiàn)了納米尺度下傳播型極化激元與分子振動(dòng)的定向振動(dòng)強(qiáng)耦合(directionalvibrationalstrongcoupling,VSC)。該突破不僅為極化激元化學(xué)領(lǐng)域拓展了全新研究維度,更推動(dòng)“光與物質(zhì)相互作用的按需調(diào)控”從理論構(gòu)想邁向?qū)嶒?yàn)驗(yàn)證階段。
2025-09-30
-
從傳統(tǒng)工藝到原子級(jí)精控了解超光滑鏡片加工技術(shù)的六大核心路徑
超光滑鏡片作為光刻機(jī)、空間望遠(yuǎn)鏡、激光雷達(dá)等高端光學(xué)系統(tǒng)的核心元件,其表面微觀粗糙度需達(dá)到原子級(jí)水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射損耗,保障系統(tǒng)光學(xué)性能。前文已圍繞超光滑鏡片的定義、潛在危害及檢測(cè)方法展開(kāi)探討,本文將系統(tǒng)梳理其加工技術(shù)體系,從奠定行業(yè)基礎(chǔ)的傳統(tǒng)工藝,到支撐當(dāng)前高精度需求的先進(jìn)技術(shù),全面解析實(shí)現(xiàn)原子級(jí)光滑表面的六大核心路徑。
2025-09-30