LED光源模塊由LED光源和散熱器組成
LED光源模塊由LED光源和散熱器組成,實現(xiàn)發(fā)光和獨立散熱模塊化設計。對于普通的LED光源,芯片產(chǎn)生的大部分熱量通過散熱器和空氣的熱交換而流失。
選擇合適的散熱結構不僅可以滿足LED的散熱需求,還可以降低LED模塊的成本。根據(jù)散熱器材料的不同,LED光源模塊可分為:基于金屬散熱、塑料散熱、玻璃散熱、復合散熱的四種常見的LED光源模塊。
基于金屬散熱的LED光源模塊
由于金屬具有導熱系數(shù)高、加工方便、強度好等優(yōu)點,基于金屬散熱的LED光源模塊是LED燈中應用較早、應用較廣泛的光源模塊。制作LED金屬光源模塊的散熱器材料為鑄鐵、鋼、鋁、銅等。鋁是LED金屬光源模塊中最常用的材料,因為它具有傳熱系數(shù)高、密度低、成本低等優(yōu)點。然而,金屬具有導電性和高密度的特點,限制了LED金屬散熱模塊在某些地方的應用。
基于玻璃散熱的LED光源模塊
玻璃具有透光率高、熱穩(wěn)定性好、絕緣性好、美觀、成本低、加工工藝成熟等優(yōu)點,一直是傳統(tǒng)燈具生產(chǎn)的首選材料。由于玻璃傳熱系數(shù)差,玻璃LED光源模塊僅用于排熱要求低的地方。
基于導熱塑料散熱的LED光源模塊
導熱塑料的傳熱系數(shù)是普通塑料的100倍,絕緣參數(shù)比金屬好,制備難度比瓷器好。隨著導熱塑料探索的改進,其價格將會下降,許多學者認為LED導熱塑料模塊是LED燈的一個非常重要的領域。
LED光源模塊復合散熱
隨著LED燈的多樣化,LED光源模塊也從單一材料盤發(fā)展為基于兩種或兩種以上材料的復合散熱的LED光源模塊。LED復合散熱模塊吸收了兩種散熱材料的優(yōu)點,解決了各自的缺點,在散熱性能、成本、絕緣、重量等方面具有相當大的優(yōu)勢。因此,許多學者認為復合排熱LED光源模塊是LED光源模塊未來的發(fā)展趨勢。
在機器視覺和半導體設備、3D圖像和印刷、太陽能和光伏發(fā)電、生命科學和醫(yī)療產(chǎn)品的研發(fā)過程中,我們經(jīng)常需要一些更精確的LED光源。目前市場主要是LED加上導光板的簡單形狀組合,在過去尚且能使用,在人工智能時代,達到光學精度水平的光源可以滿足您的需求。
▍最新資訊
-
飛秒激光技術:引領電鏡載網(wǎng)加工進入高精度高效時代
在微納尺度科學研究與工業(yè)檢測領域,電子顯微鏡(以下簡稱“電鏡”)是揭示物質微觀結構、探究材料性能機理的核心觀測工具。而電鏡載網(wǎng)作為支撐與固定待測樣品的關鍵組件,其加工質量不僅直接決定樣品固定的穩(wěn)定性,更對薄膜沉積效果、器件結構分析精度及最終電鏡成像質量產(chǎn)生關鍵性影響。因此,研發(fā)適配微納領域需求的載網(wǎng)加工技術,已成為提升電鏡應用效能的重要環(huán)節(jié)。
2025-09-30
-
光的折射與光速變化機制探析
將直筷斜插入盛水容器中,肉眼可觀察到筷子在水面處呈現(xiàn)“彎折”形態(tài);夏季觀察游泳池時,主觀感知的池底深度顯著淺于實際深度——此類日常現(xiàn)象的本質,均是光在不同介質界面發(fā)生折射的結果。在物理學范疇中,折射現(xiàn)象的核心特征之一是光的傳播速度發(fā)生改變。然而,“光以光速傳播”是大眾熟知的常識,為何光在折射過程中速度會出現(xiàn)變化?這一問題需從光的本質屬性、介質與光的相互作用等角度展開嚴謹分析。
2025-09-30
-
納米尺度光與物質強耦合新突破:定向極化激元技術開辟精準調控研究新范式
2025年9月22日,國際權威期刊《NaturePhotonics》發(fā)表了一項具有里程碑意義的研究成果:由西班牙奧維耶多大學PabloAlonso-González教授與多諾斯蒂亞國際物理中心AlexeyNikitin教授聯(lián)合領銜的研究團隊,首次通過實驗實現(xiàn)了納米尺度下傳播型極化激元與分子振動的定向振動強耦合(directionalvibrationalstrongcoupling,VSC)。該突破不僅為極化激元化學領域拓展了全新研究維度,更推動“光與物質相互作用的按需調控”從理論構想邁向實驗驗證階段。
2025-09-30
-
從傳統(tǒng)工藝到原子級精控了解超光滑鏡片加工技術的六大核心路徑
超光滑鏡片作為光刻機、空間望遠鏡、激光雷達等高端光學系統(tǒng)的核心元件,其表面微觀粗糙度需達到原子級水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射損耗,保障系統(tǒng)光學性能。前文已圍繞超光滑鏡片的定義、潛在危害及檢測方法展開探討,本文將系統(tǒng)梳理其加工技術體系,從奠定行業(yè)基礎的傳統(tǒng)工藝,到支撐當前高精度需求的先進技術,全面解析實現(xiàn)原子級光滑表面的六大核心路徑。
2025-09-30